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ABSTRACT  

Air temperature and dew point temperature are two of the important atmospheric 

variables that affect the growth rate of plants as well as many other processes in agricultural and 

ecological systems. Extremely low air temperature and dew point temperature are harmful to the 

crops and might cause severe economic losses. Therefore, accurate predictions of air temperature 

and dew point temperature are necessary in order to prevent crops from being damaged by severe 

frost. Previous studies developed artificial neural network (ANN) models to predict air 

temperature and dew point temperature from one to twelve hours in advance. The goal of the 

research herein was to develop more accurate air temperature and dew point temperature 

prediction models. This research incorporated evolutionary approaches in the development of 

ANNs to refine the selection of input prior data for each applicable atmospheric variable. 
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CHAPTER 1 

INTRODUCTION

 

Air temperature and dew point temperature are two of the important weather variables that 

affect crop growth. They have been considered as inputs to model the simulation of crop 

production (Hoogenboom, 2000a). Absalon and Slesak (2012) stated that air temperature should 

be carefully monitored and included in the assessment of the quality of human life in an urban 

area. Stull (2011) used air temperature along with relative humidity to calculate wet-bulb 

temperature at standard sea level pressure. White-Newsome et al. (2012) used outdoor air 

temperature and dew point temperature for the prediction of indoor heat to mitigate the effects of 

indoor heat exposure among the elderly people in Detroit. Dew point temperature is an essential 

weather variable for estimating various agro-meteorological parameters. Several agronomic, 

hydrological, ecological, and meteorological models require dew point temperature data 

(Hubbard et al., 2003). The 2007 spring freeze in the eastern U.S. killed newly formed leaves, 

shoots, and developing flowers and fruits (Gu et al., 2008). The severity of frost damage is 

influenced by the intensity and duration of low temperatures, the rates of temperature decrease 

and short-term temperature variations (Rodrigo, 2000). Therefore, accurate predictions of air 

temperature and dew point temperature are necessary to avoid severe economic losses due to 

weather events such as frost and freeze. 

The Georgia Automated Environmental Monitoring Network (AEMN) was established in 

1991, and currently consists of more than 80 weather stations distributed throughout Georgia 
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(Hoogenboom, 2000b). These solar-powered stations monitor weather data every second such as 

air temperature, dew point temperature, relative humidity, vapor pressure, wind speed, wind 

direction, solar radiation and rainfall. These data were summarized into hourly averages until 

March 1996. Subsequently, they have been aggregated into fifteen minute averages. The 

collection of dew point temperature data was started in 2002. These observations are downloaded 

to the server, and immediately made available on the website www.georgiaweather.net. 

The data collected from AEMN have been used in several studies to create a number of ANN 

models that predict air temperature and dew point temperature and a decision support system that 

generates frost warnings using these predictions. Jain et al. (2003) created Artificial Neural 

Network (ANN) models to predict air temperature during winter. These models were trained 

using the patterns which included six hours of prior weather information such as air temperature, 

humidity, wind speed, and solar radiation as well as the time of the day. Smith et al. (2006) 

improved the prediction accuracies of winter-specific air temperature models by including 

seasonal information in the input pattern and extending the duration of prior data to 24 hours. 

Smith et al. (2009) also developed ANN models to predict air temperature throughout the year 

using the data collected through 2005. Shank et al. (2008a) created ANN models to predict dew 

point temperature up to 12 hours in advance using the weather variables dew point temperature, 

relative humidity, solar radiation, air temperature, wind speed, and vapor pressure. Shank et al. 

(2008b) created ensemble ANN models to improve the accuracy of dew point temperature 

prediction. The ANN models developed by Smith et al. (2009) and Shank et al. (2008b) were 

implemented at http://www.georgi aweather.net/, where the predictions are available for both air 

and dew point temperatures for every station in Georgia. These hourly predictions are made from 

one to twelve hours ahead and updated every 15 minutes. These predictions are mainly used by 



 
 

3 
 

the Georgia farmers for agricultural decision making. Chevalier et al. (2012) created a decision 

support system to interpret these air temperature and dew point temperature predictions along 

with the observed wind speed as one of the five frost warnings determined related to blueberries 

and peaches. 

Several studies have combined the evolutionary approaches with ANN techniques for tasks 

such as training the ANN, and determining the preferred network architecture etc. Montana et al. 

(1989) employed a genetic algorithm (GA) to evolve the connection weights of an ANN for the 

sonar image classification problem. Stanley et al. (2002) presented a method named NEAT 

(Neuro Evolution of Augmenting Topologies), which enabled parallel evolution of both network 

architecture and connection weights using an evolutionary algorithm. Aijun et al. (2004) used a 

GA to optimize the chemical vapor infiltration (CVI) processing parameters of Carbon/Carbon 

composites. The fitness function of their GA evaluated ANNs based on the candidate input 

parameters of the network. Saxena et al. (2007) applied a GA to choose the preferred 

combination of features to develop an ANN fault classification model for condition monitoring 

of mechanical systems. This GA also evolved the structure of the ANN in terms of the number of 

hidden nodes. Mohebbi et al. (2011) coupled a GA with the ANN to estimate the moisture 

content of dried banana. Their GA evolved the ANN parameters such as the number of hidden 

layers, and the number of hidden nodes, learning rate and momentum for each hidden layer. 

Lazzús (2011) created an ANN model to estimate auto ignition temperatures of organic 

compounds by training the models using a Particle Swarm Optimization (PSO) technique. Wu & 

Chen (2009) created nonparametric regression ensemble models for rainfall forecasting by 

coupling PSO with the ANN. Chau (2007) applied the PSO for the training of a three-layered 

perceptron network to predict the outcome of the litigation process in construction claims and 
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concluded that the PSO-based perceptron network exhibited better performance than the back 

propagation-based perceptron network with regard to the convergence rate of training and the 

prediction accuracy. 

Chapter 1 of this thesis outlines the problem of air temperature and dew point temperature 

prediction and provides an introduction to previous studies that approached this problem and 

other studies that applied computational evolutionary approaches to ANN prediction.This 

introduction briefly describes the AEMN which provided the environmental data for these 

studies. This chapter also provides the organization of the thesis. The overall goal of this 

research is to improve the prediction accuracies of air temperature and dew point temperature 

ANN models. Mean Absolute Error (MAE) is the measure of accuracy for all the ANN models. 

Specific research objectives to accomplish this overall goal are identified in Chapter 2 and 

Chapter 3. 

Chapter 2 will describe the research that will apply a genetic algorithm (GA) to refine the 

way in which the input prior data for the ANN model are selected for air temperature prediction. 

The previous research by Smith et al. (2009) included a constant duration of input prior data in 

fixed intervals for all weather variables and for all prediction horizons. The objective of the 

research herein will be to determine the duration and resolution of input prior data for each input 

weather variable and for each prediction horizon. 

Chapter 3 will describe the research that will apply a GA and a particle swarm optimization 

(PSO) technique to determine the duration and resolution of input prior data for dew point 

temperature prediction for one-, six- and twelve-hour prediction horizons. This research will also 

determine the effect of not including the constraint of every applicable weather variable being 
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represented in the input prior data. The accuracies of the ANN models created using the GA and 

the two PSO based approaches will be compared to those of the ANN models created based on 

the existing constant duration and fixed resolution approach. 

Chapter 4 summarizes the research performed in this study and provides conclusions for the 

findings. It also suggests possible future research that could further improve the accuracies of the 

air temperature and dew point temperature ANN models by fine-tuning various computational 

parameters involved. 
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CHAPTER 2 

 

A GENETIC ALGORITHM TO REFINE INPUT DATA SELECTION FOR AIR 

TEMPERATURE PREDICTION USING ARTIFICIAL NEURAL NETWORKS
1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 
Venkadesh, S., Potter, W. D., McClendon, R. W., and Hoogenboom, G., To be submitted to Applied Soft 

Computing.
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Abstract 

 

Accurate prediction of air temperature is important to avoid severe economic losses due to 

frost damage of crops. Previous research focused on the development of artificial neural network 

(ANN) models to predict air temperature from one to twelve hours in advance. The inputs to 

these models included a constant duration of prior data with a fixed resolution for all 

environmental variables for all prediction horizons. The goal of the research herein was to 

develop more accurate ANN models to predict air temperature for each prediction horizon. The 

objective of this research was to apply a genetic algorithm (GA)for each prediction horizon to 

determine the preferred duration and resolution of input prior data for each environmental 

variable. Except for a few cases, the GA generally includeda longer duration for prior air 

temperature data and shorter durations for other environmental variables. The ANN models 

created based on this GA based approach provided smaller errors than the models created based 

on the existing constant duration and fixed data resolution approach for all twelve prediction 

horizons. For instance, the mean absolute errors (MAE‟s) on the evaluation input patterns for 

one, six and twelve hour prediction models created based on this GA based approach were 

0.568
0
C, 1.567

0
C and 1.997

0
C. These MAE‟s were improvements of 3.22%, 2.39% and 2.73% 

over the models created based on the existing approach for one, six and twelve prediction 

horizon respectively. Thus, the GA based approach to determine the duration and resolution of 

input prior data proved to create more accurate ANN models than the existing ones for air 

temperature prediction. Future work could examine the effects of various GA and fitness 

evaluation parameters involved in this research. 
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I. Introduction 
 

Air temperature is one of the most important weather variables that affect crop growth and 

has been considered as a primary input to model the simulation of crop production 

(Hoogenboom, 2000a). Absalon and Slesak (2012) stated that air temperature should be carefully 

monitored and included in the assessment of the quality of human life in an urban area. Stull 

(2011) used air temperature along with relative humidity to calculate wet-bulb temperature at 

standard sea level pressure. White-Newsome et al. (2012) used outdoor air temperature and dew 

point temperature for the prediction of indoor heat to mitigate the effects of indoor heat exposure 

among the elderly people in Detroit. The 2007 spring freeze in the eastern U.S. killed newly 

formed leaves, shoots, and developing flowers and fruits (Gu et al., 2008). The severity of frost 

damage is influenced by the intensity and duration of low temperatures, the rates of temperature 

decrease and short-term temperature variations (Rodrigo, 2000). Therefore, it is necessary to 

accurately predict air temperature to help farmers in preventing crops from being damaged by 

freezing temperatures. 

The Georgia Automated Environmental Monitoring Network (AEMN), established in 1991 

(Hoogenboom, 2000b), currently consists of more than 80 weather stations distributed 

throughout Georgia. These solar-powered stationsmonitor weather data including air 

temperature, dew point temperature, relative humidity, vapor pressure, wind speed, wind 

direction, solar radiation and rainfall, every second. These data were summarized into hourly 

averages until March 1996. Subsequently they have been aggregated into fifteen minute 

averages. These observations are downloaded to the server, and immediately made available on 

the website www.georgiaweather.net. 
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Jain et al. (2003) created Artificial Neural Network (ANN) models to predict air temperature 

during winter. These models were trained using the patterns which included six hours of prior 

weather information such as air temperature, relative humidity, wind speed, and solar radiation 

as well as the time of the day. Smith et al. (2006) improved the prediction accuracies of winter-

specific air temperature models by including seasonal information in the input pattern and 

extending the duration of prior data to 24 hours. Smith et al. (2009) also developed ANN models 

to predict air temperature throughout the year using the data collected through 2005. These ANN 

models have been implemented on www.georgi aweather.net as tools for temperature prediction. 

Shank et al. (2007) created ANN models to predict dew point temperature up to 12 hours in 

advance using the weather variables dew point temperature, relative humidity, solar radiation, air 

temperature, wind speed, and vapor pressure. Shank et al.(2008) created ensemble ANN models 

to improve the accuracy of dew point temperature prediction. These ANN models were also 

implemented on the same website, where the predictions are available for both air and dew point 

temperature for every station in Georgia. These hourly predictions are made from one to twelve 

hours ahead and updated every 15 minutes once new data have been received from each weather 

station. Chevalier et al.(2012) created a decision support system to interpret the air temperature 

and dew point temperature predictions along with the observed wind speed as one of the five 

frost warnings determined related to blueberries and peaches. All theexisting ANN models useda 

Ward-style ANN architecture and were trained using the well-known error back-propagation 

algorithm. Preferred values for the ANN parameters such as learning rate, number of hidden 

nodes, and initial weight range were determined by iterative search. The observations collected 

by weather stations were partitioned into different datasets for model development and 

evaluation purposes.  
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In the previous work by Smith et al. (2009) the duration of prior weather information for the 

inputs to the ANN model was determined by a limited iterative search. The durations considered 

were 2, 4, 6, 12, 18, 24, 30, 36, and 48 hours of prior data. A single duration was used to include 

the prior data for all five weather variables. Although the observed data were available for every 

fifteen minutes, prior work always included the data in one hour intervals. They did not explore 

the effects of including the prior data with a shorter or longer interval than one hour. Thus all 

twelve existing models included 24 hours of prior data for each weather variable in one hour 

intervals, resulting in a constant 258 input variables to the ANN models. In this paper, the term 

„resolution‟ will be used further, instead of „interval‟. For instance, a 15-minute resolution or the 

highest resolution will denote that the prior data were included in fifteen minute intervals and a 

4-hour resolution will denote that the prior data were included in four hour intervals. 

Evolutionary algorithms, which are inspired by the biological evolutionary process, have 

been widely combined with ANNs to evolve the network architecture, connection weights and 

input features. Montana et al. (1989) employed agenetic algorithm (GA) to evolve the connection 

weights of an ANN for the sonar image classification problem. They have reported that their 

learning algorithm based on the GA outperformed the traditional back propagation algorithm. 

Stanley et al. (2002) presented a method named NEAT (Neuro Evolution of Augmenting 

Topologies), which enabled parallel evolution of both network architecture and connection 

weights. Aijun et al. (2004) used a GA to optimize the chemical vapor infiltration (CVI) 

processing parameters of carbon/carbon composites. The fitness function of their GA evaluated 

ANNs based on the candidate input parameters of the network. Saxena et al. (2007) applied a GA 

to choose the preferred combination of features to develop an ANN fault classification model for 

condition monitoring of mechanical systems. This GA also evolved the structure of the ANN in 
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terms of the number of hidden nodes. Mohebbiet al. (2011) coupled a GA with the ANN to 

estimate the moisture content of dried banana. Their GA evolved the ANN parameters such as 

the number of hidden layers, and the number of hidden nodes, learning rate and momentum for 

each hidden layer. Čongradac and Kulić (2012) created a model to reduce the electricity 

consumption of chillers by coupling the ANN with a GA. They used the ANN to create a chiller 

model and then applied the GA to optimize the chiller model parameters. Irani and Nasimi 

(2011) used a hybrid GA-ANN strategy to predict the permeability of the Mansuri Bangestan 

reservoir. They used the GA to search for the best set of initial ANN weights for training using 

the back propagation and showed that the hybrid approach outperformed the traditional gradient-

descent based approach for the ANN training. However, the best way to combine the 

evolutionary algorithm with an ANN is problem dependent.  

In our current research, it was hypothesized that the information associated with each 

weather variable could contribute in varying degrees to the model prediction accuracy. Also, 

including too much unnecessary information might have a negative effect on the prediction 

accuracy. Tahai et al. (1998) claimed that incorporating too many input noise variables into the 

ANN prediction model would result in a poor ANN generalization capability. The amount of 

input information to the ANN model associated with a weather variable can be controlled with 

the duration and resolution of prior data for that particular weather variable. Longer duration and 

higher resolution requires more information to be included. The time series nature of the weather 

data also makes it intuitively appealing to explore variable resolution in prior data. The goal of 

our research was to improve the air temperature prediction accuracy of the existing ANN models 

developed by Smith et al. (2009), by optimizing the duration and resolution of prior data 

included as inputs. The objectives of this study were as follows: Using the evolutionary 
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algorithm for each prediction horizon, determine the preferred total duration of prior data to be 

included, and the resolution with which the prior data should be included for that duration for 

each input weather variable. 

II. Methodology 

This study was conducted in two phases: The evolutionary phase and the final model 

development phase. The evolutionary phase aimed at finding the duration and the resolution of 

prior data for each weather variable using the GA. The final model development phase 

developed the ANN models to be implemented for practical use, using the duration and the 

resolution identified in the evolutionary phase. All the networks were developed with the Ward-

style architecture having three slabs in the hidden layer using Gaussian, Gaussian complement 

and hyperbolic tangent activation functions. Each ANN model was trained using the error back-

propagation algorithm, a learning rate of 0.1, an initial weight range of ±0.15 and a range of (0.1, 

0.9) to scale the inputs. These values were chosen based on the previous research conducted by 

Smith et al. (2009) and Shank et al. (2007). Mean absolute error (MAE) was the measure of 

accuracy for the ANN models. 

The term model refers to a network with a certain number of input, hidden and output nodes 

with a specific set of input variables resulting from a particular duration and resolution of prior 

data. During model development, several network instantiations were created for a modelwhich 

differed only in the initial random weights and the order in which the training patterns were 

presented. Smith et al. (2006) showed that training and evaluating multiple instantiations of the 

same model provided a better foundation for the comparisonof model accuracies than a single 

network instantiation. 
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1. Input patterns and Datasets 

A pattern is a set of values corresponding to the input and output nodes of the ANN 

model.The weather variables air temperature, relative humidity, wind speed, solar radiation and 

rainfall observed at different points in the time series were used to create an input pattern. These 

weather variables, observed at the time of prediction, were always included in the inputs. The 

input pattern also included the rates of change calculated as follows: global rates of change of a 

weather variable were the differences between the observation at the time of prediction and each 

of the included prior data observations. Local rates of change of a weather variable were the 

differences between every two adjacent observations that were included in the time series. Eight 

fuzzy logic variables to represent the time of day and the day of year information were also 

included in the input pattern similar to Smith et al. (2006). 

It was intuitively assumed that more recent prior data observations were more important than 

historically older observations to predict air temperature. Thus, a variable resolution scheme 

which allowed higher resolution for recent observations, and lower resolution for historically 

older observations was explored in this study.This scheme encoded both the duration and the 

multiple resolutions of prior data for a weather variable as follows: the maximum allowed total 

duration of prior data for each weather variable was 48 hours. Although prior research work 

found that 24 hours of prior data was the preferred duration for the inputs, this decision was 

primarily based on including „all five weather variables‟ of prior 24 hours. Our current study 

allowed 48 hours of prior duration for each weather variable to see if the ANN model could take 

advantage of the additional information, past 24 hours in the prior data for some weather 

variables. For each prediction horizon, each of the five weather variables represented the 

resolutions in segments of twelve hour duration. The various resolutions considered in this study 
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were 15-minute, 1-hour, 2-hour, and 4-hour. These resolutions indicate the intervals between the 

observations included in the prior data. It should be noted that the highest possible resolution was 

15-minute, as the observed data were aggregated into fifteen minute averages. Thus four 

segments of twelve hour duration that allowed different or equal resolution were associated with 

each of the five weather variables. An input weather variable had at least one segment, implying 

that the possible total durations of prior data are twelve, 24, 36 and 48 hours. It was assumed in 

this study that at least twelve hours of prior data with 4-hour resolution for each of the five input 

weather variables would be required for air temperature prediction. The first segment could have 

any of the four resolutions and a segment would always have the resolution equal to or less than 

its previous segment. Thus, for example, a typical candidate solution for solar radiation might be: 

“15-minute, 2-hour, 4-hour, X ”,which means, 36 hours of prior solar radiation values should be 

included with 15-minute resolution for the first twelve hours of prior data (48 observations), 2-

hour resolution from the 13
th 

prior hour to the 24
th

 prior hour (6 observations), and 4-hour 

resolution from the 25
th

 prior hour to the 36
th

 prior hour (3 observations), totaling to 57 prior 

observations of solar radiation. The ‘X’ indicates no prior data was included past 36 hours. The 

maximum number of segments was restricted to four so as to have a reasonable GA search space 

size, yet produce realistic results. 

Data collected from 2002 through 2010 at various weather stations geographically distributed 

throughout the state of Georgia were partitioned into model development and evaluation 

datasets. The ANN models were created using the patterns from the development dataset. Once 

these models were developed, they had to be evaluated on the patterns which were not presented 

to them during model development to perform an unbiased evaluation. Therefore, the evaluation 

dataset included years and locations which were mutually exclusive of the development dataset. 
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The development dataset was further partitioned into training and selection datasets. The patterns 

from the training dataset were used for ANN weight adjustment using back-propagation, and the 

patterns from the selection dataset were only used in feed-forward mode to choose the most 

accurate network instantiation for a model. The training and selection datasets shared the same 

years of data, but differed in the included locations as presented in Table 2.1. Using a stopping 

dataset to determine when to end the training was found to be unnecessary in the previous work 

by Smith et al. (2006) as the network performance on stopping and training datasets was 

qualitatively similar. 

2. Evolutionary phase 

The duration and the resolutions of prior data for each weather variable were identified in the 

evolutionary phase using the GA for one through twelve prediction horizons. Each GA run 

evolved the duration and the resolutions of prior data based onthe accuracy of the ANNs trained 

and evaluated on 10,000 patterns sampled from the training and the selection dataset 

respectively. During the course of one GA run, more than 5000 ANN models were created with 

the objective of determining the preferred duration and resolution. Thus, the evolutionary phase 

required many more computational resources than the final model development phase in this 

study. 

2.1.The GA parameter settings 

The Java-based ECJ (Evolutionary Computation Journal) library developed by Luke et al. 

(2010) was used to implement the GA search. The time consuming nature of the fitness 

evaluation restricted the population size to 48 for all GA runs. The particular choice of 48 was 

due to its proportionality to the number of processors available on the computers on which the 
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experiments were run. This proportionality allowed for efficiently parallelizing the fitness 

evaluations in the GA population. An individual in the GA population consisted of five 

components, one for each weather variable. Each component encoded the duration and the 

resolutions of prior data in four segments as explained earlier for the respective weather variable 

(genotype). Thus, an individual represented the way in which the input variables to the ANN 

model were to be included (phenotype). These ANN models were evaluated by the GA during 

the search for the preferred solution. One-point component level crossover with a probability of 

0.5 was employed, for each component. Unlike the conventional one-point crossover, the point 

before the first segment (the starting point of a component) was considered as a possible 

crossover point, allowing a complete exchange of that particular component between two 

parents. One of two mutation schemes with a probability of 0.3 was applied at the component 

level, for each component. These probabilities for the variation operators were chosen based on 

the results from a set of preliminary runs. A step mutation either increased or decreased the 

resolution of a randomly chosen segment by one step, and a length mutation either removed the 

last segment, or added a new segment with a randomly chosen resolution. Both mutation 

schemes had equal selection probabilities. Repair schemes were implemented to ensure the 

integrity of an individual as follows: variation operators were not allowed to change a value 

beyond the defined boundary values. If a variation operator altered a segment to a resolution 

lower than the next segment in that component, all subsequent segments were changed to the 

new resolution of the altered segment, to maintain integrity. 

2.2. Fitness evaluation 

Two sets of 10,000 observationswere randomly sampled from the training and the selection 

dataset respectively for the fitness evaluation. These random samples were equally distributed 
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over all the selected stations and the years of the respective dataset as given in Table 2.1. Each 

pattern had its input variables to the ANN model selected as follows: five weather variables 

observed at the time of prediction, prior data for each of the five weather variables as represented 

in the respective components of the individual, global and local rates of change of the included 

prior data, and eight fuzzy seasonal variables. Fig. 2.1 shows the flow diagram of the fitness 

evaluation module. As can be seen from this figure, different individuals in the GA population 

not only created ANN models with a varying number of inputs, but also constructed different 

sets of 10,000 patterns for their fitness evaluation. Since a preliminary study revealed that the 

number of hidden nodes per slab had minimal impact on the ANN model accuracy, this value 

was fixed at 10 for all the ANN models developed in this phase so as to reduce the time required 

for ANN training. An ANN model which was the phenotype of an individual, instantiated 10 

networks which were assigned different random initial weights. Each of the 10 networks was 

trained using the same set of patterns from the training data set, but presented in a different 

order. After each epoch of training, the network was evaluated on the training dataset. Training 

was stopped when the MAE decrease on the training dataset was less than or equal to 0.005 for 

three continuous epochs or a maximum of 20 epochs was reached. Once the training was 

completed, the network was evaluated on the selection dataset. Thus there were 10 selection 

dataset MAEs associated with an individual during its fitness evaluation. The lowest MAE 

among these 10 network evaluations on the selection dataset was assigned as the fitness value to 

the associated individual. In each GA generation, multiple individuals were evaluated in 

parallelon different processors available on the system so as to expedite the GA run. 
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The GA was terminated when the fitness improvement (MAE decrease) was not more than 

0.005 in 100 continuous generations. None of the GA runs required more than 300 generations 

before termination. 

2.3.Experiments 

Twelve GA instances were run for one through twelve hour prediction horizons. In rare 

scenarios, where the GA was stuck in the local optimum (where the best population fitness never 

improved from a generation less than 10), the GA was restarted for that prediction horizon. The 

runs were made on powerful computational servers that had at least eight processors. The fitness 

evaluation module of the GA was highly resource-intensive. A preliminary study using 10,000 

patterns for fitness evaluation required approximately 5 to 7 days of run time, and a large 

working memory for one GA run, since, in addition to the network training and evaluation, the 

parallel fitness evaluation of multiple individuals necessitated the construction of different sets of 

10,000 patterns to be held in memory. This also required the allocation of sufficient resources for 

the garbage collection process run in the background by the Java virtual machine (JVM) to clean 

up the heap memory once an individual was evaluated. This larger heap size requirement 

allowed the GA runs only on the machines which ran 64 bit JVM on a 64 bit operating system 

(for Windows). Because of the time constraints, this study did not explore and fine-tune various 

GA parameters. Some of the limitations of the GA runs include a smaller population size (48) 

and a smaller number of training patterns (10,000) for fitness evaluation. Finally, a limited study 

was conducted using a GA with an increased number of training patterns for fitness evaluation. 
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3. Final model development phase 

In this phase, the final ANN models were developed and evaluated for each prediction 

horizon using a larger number of patterns sampled from the datasets given in Table 2.1. The final 

ANN models were trained based on the duration and resolution determined by the GA for each 

input weather variable and for each prediction horizon, and named the GASDR (GA Selected 

Duration and Resolution) models.For each prediction horizon, 300,000 randomly sampled 

patterns from the training datasetwere used for ANN training. In the same way, 100,000 patterns 

were randomly sampled from the selection dataset for ANN selection, and 1,000,000 patterns 

were randomly sampled from the evaluation dataset for model evaluation. For each prediction 

horizon, 30 networks were instantiated and trained using the training dataset.Then, the selection 

dataset patterns were presented to each network instantiation in feed-forward-only mode. The 

most accurate network instantiation on the selection dataset was selected to represent the ANN 

model for that prediction horizon.  

This study also recreated the ANN models using the methodology followed by Smith et al. 

(2009) for the comparison of model accuracies. These ANN models included a constant 24 hours 

of prior data with a fixed one hour resolution for all the input weather variables and for all 

prediction horizons, and were named the CDFR (Constant Duration and Fixed Resolution) 

models. In order to allow for a fair comparison of model accuracies, the CDFR models were 

recreated and evaluated using the same datasets used to develop and evaluate the GASDR 

models. As mentioned earlier, from a preliminary study, it was observed that the number of 

hidden nodes per slab had minimal impact on the model prediction accuracy. Hence all the final 

ANN models were developed using 40 hidden nodes per slab, the value used by Smith et al. 

(2009). This study included the observations from different locations and years for the model 
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development than the ones included in the previous study by Smith et al. (2009). The training 

dataset in this study consisted of data from fourteen locations and six years as opposed to nine 

locations and four years used in the previous study. Therefore, the existing ANN models 

developed in the previous study (which have been implemented on the website) were evaluated 

on the evaluation dataset and their accuracies were compared with those of the CDFR models for 

one- through twelve-hour prediction horizons. This comparison was performed to examine the 

effect of including the data from more locations and years for the ANN training on the model 

accuracy. 

III. Results 

The results from the evolutionary phase for the twelve prediction horizons are presented 

in Table 2.2. The GA search included 48 hours of prior air temperature data with 4-hour 

resolution for the last two segments as inputs for one- through nine-hour prediction horizons. It 

included 36 hours of prior air temperature data for the ten-hour prediction horizon. The GA 

search included only twelve hours of prior relative humidity data with 2-hour or 4-hour 

resolution for all prediction horizons. For wind speed, generally, only the first segment (first 

twelve hours of prior data) was included in all the cases, except for the seven- and nine-hour 

prediction horizons, where two and four segments were included respectively. Except for the 

one-, six-, and ten-hour prediction horizons, only the first segment was included for solar 

radiation. For rain fall, five out of twelve prediction horizons included data past the first 

segment. In the cases where the highest resolution (15-min) was preferred for a weather variable, 

it was preferred only for the first twelve hours of prior data. The only exception was that the first 

two segments of air temperature were included with 15-min resolution for the nine-hour 

prediction horizon. No segment past 24 hours was included with a resolution higher than the 
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lowest resolution (4-hour) for any weather variable and for any prediction horizon. For eleven- 

and twelve-hour prediction horizons, only the first segment was included for all weather 

variables. Some inconsistencies in the results are likely due to the limitations of the GA runs. It 

should be noted that only 10,000 training patterns sampled from more than 2.5 million patterns 

were used for fitness evaluation, compared to the 300,000 patterns used to train the existing 

ANN models implemented on the website and the GASDR and CDFR models in the final model 

development phase of this study. If there were sufficient resources available to run the GA with a 

much larger population size, and a larger number of training patterns for the fitness evaluation, 

the GA might have been able to evolve more consistent solutions. It is also possible that an 

intuitively more appealing solution was found during the GA run, but was assigned a fitness 

value (MAE) which was slightly larger than the best fitness value found, and otherwise could 

have been the best solution if more network instantiations were made for the fitness evaluation. 

Overcoming these concerns would require increased computational resources. 

In the final model development phase, the GASDR models were more accurate than the 

CDFR models for nine out of twelve prediction horizons (one through six and eight through ten) 

on the training dataset. On the selection dataset, the GASDR models were more accurate than the 

CDFR models for one- through ten-hour prediction horizons. However, the CDFR models 

provided lower errors than the GASDR models on both training and selection datasets for 

eleven- and twelve-hour prediction horizons. The MAEs of the GASDR and CDFR models on 

model development (training, selection) and model evaluation datasets are presented in Table 

2.3. 

On the evaluation dataset, the GASDR models provided lower MAEs than the CDFR models 

for all prediction horizons except for the eleven-hour horizon. The accuracy improvement in 
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predicting air temperature in the GASDR models was generally due to the inclusion of prior air 

temperature data past 24 hours (with a low resolution) in the inputs. The previous study by Smith 

et al. (2009) could not find this as they assigned equal roles to all weather variables in the input 

layer of the ANN model. 

The GA with the restricted parameter settings did not evolve a solution that improved the 

prediction accuracy for the eleven-hour prediction horizon. Hence, an extended study was 

performed using the GA with an increased number (20,000) of ANN training patterns for fitness 

evaluation for one-, four-, eight-, eleven- and twelve-hour prediction horizons to examine the 

effect of the number of fitness evaluation training patterns on the GASDR model accuracy. The 

GASDR models developed using this extended GA were referred to as EGASDR (Extended GA 

Selected Duration and Resolution) models. Due to the limited availability of computational 

resources, the extended GA runs were not made for other prediction horizons. 

As mentioned earlier, the regular GA runs did not include any prior data past twelve hours 

for eleven- and twelve-hour prediction horizons, but, the extended GA runs included 48 hours of 

prior air temperature data for these two prediction horizons. The extended GA preferred the 

highest resolution for the first twelve hours of prior air temperature data, except for the eight-

hour prediction horizon (Table 2.4). As a result, the EGASDR models were more accurate than 

their corresponding GASDR models for one-, four-, eleven-, and twelve-hour prediction horizons 

(Table 2.3). Using the extended GA, the highest improvement in the accuracy was achieved at 

the four-hour prediction horizon with a 4.59% improvement over the models created based on 

the existing approach. 
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The CDFR models were more accurate than the existing models for two- through twelve-

hour prediction horizons. The results indicated that the higher prediction horizons 

benefitted more from the inclusion of more locations and years in the training dataset than the 

lower prediction horizons (Table 2.3). However, for the one-hour prediction horizon, the CDFR 

model was slightly less accurate than the existing model due to the inclusion of more locations 

and years in the training dataset. 

A strong correlation between the observed and predicted air temperature values was observed 

at the one-hour prediction horizon with a coefficient of determination (R
2
) of 0.9918 for the 

EGASDR model. The correlation became weaker as the prediction horizon increased, and the 

predictions from the twelve-hour model had an R
2
 value of 0.9151 (Fig. 2.4). The dotted line in 

Fig. 2.4 represents the ideal case of the 1:1 line of fit of a hypothetical model. The best line of fit 

for the one-hour prediction horizon had a slope of 0.183 and a Y-intercept of 0.990, whereas the 

best line of fit for the twelve-hour prediction horizon had a slope of 0.897 and a Y-intercept of 

2.184 (Fig. 2.4). The R
2
 values and regression equations of the GASDR / EGASDR and CDFR 

models have been presented in Table 2.5. 

IV. Summary and Future work 

This study developed ANN models to predict air temperature which had higher accuracies 

than the ANN models developed based on the existing approach by performing a GA search for 

the optimal duration and resolution of prior data for each weather variable to be included as 

inputs. It identified the contributive roles of various weather variables in predicting the air 

temperature by using resource-intensive computational intelligence techniques. The ANN 

models based on the existing approach were recreated using the same datasets used to create the 

ANN models based on the new approach for a fair comparison. The GA based approach with a 
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restricted parameter setting for the fitness evaluation produced more accurate models for one- 

through ten- and twelve-hour prediction horizons, but did not produce more accurate model for 

the eleven-hour prediction horizon. A limited study was performed that ran the GA with an 

increased number of ANN training patterns for the fitness evaluation for one-, four-, eight-, 

eleven-, and twelve-hour prediction horizons. Except for the eight-hour prediction horizon, the 

final ANN models developed using this extended GA based approach were the most accurate 

models developed in this study for their respective prediction horizons. Using the extended GA 

based approach, the highest improvement in the accuracy was achieved at the four-hour 

prediction horizon with a 4.59% improvement, compared to the accuracy of the model created 

based on the existing approach. However, the methodology used in this study could be further 

improved by exploring and fine-tuning various computational parameters. The extended GA runs 

showed that the GASDR model accuracies were generally improved by increasing the number of 

ANN training patterns used for the fitness evaluation. With additional computational resources, 

the number of ANN training patterns and the number of random network instantiations could be 

further increased for the GA fitness evaluation. Other possible parameters to explore include the 

GA population size, the crossover and the mutation operators and their probabilities, and the 

number of segments in the prior data for a weather variable. Future work will focus on this 

aspect of the study to tweak the parameters so as to effectively utilize the available 

computational resources. 
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Table 2.1: Dataset partitioning by years and locations 

 

 

Approximate 

Dataset    Sites    Years   number of  

observations 

 

    Atlanta, Brunswick, Pine Mountain,  

Covington, Dallas, Dawson, Dearing, 2002 

Training Duluth, Homerville, Oakwood,   2003 2,500,000 

Shellman, Tifton, Tiger, Woodbine  2004  

Development         2005 

 Alma, Arabi, Williamson, Bowen,  2007 

Selection Dempsey, Dixie, Eatonton, Georgetown, 2009 2,500,000 

Griffin, Howard, Jeffersonville,  

Lafayette, Plains, Sparta, Tennille 

 

Alapaha, Alpharetta, Arlington,  

Attapulgus, Blue Ridge, Byromville,  2006 

Cairo, Calhoun, Camilla, Clarks Hill,  2008 2,500,000 

Evaluation  Cordele, Danville, Douglas, Ellijay,  2010 

Moultrie, Nahunta, Newton, Odum,  

Ossabaw, Sasser, Savannah, Valdosta,  

Vidalia 
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Table 2.2: Prior data resolution determined by the GA search for each prediction horizon 

Prediction  

horizon 

(hour) 

Air temperature 

 
Relative 

humidity 

 

Wind speed 

 

Solar radiation 

 

Rain fall 

rs
a
1 rs2 rs3 rs4 

 rs1 rs2 rs3 rs4 
 rs1 rs2 rs3 rs4 

 rs1 rs2 rs3 rs4 
 rs1 rs2 rs3 rs4 

     
 

    
 

    
 

    
 

    
1 15m 2hr 4hr 4hr  4hr x

 
x x  2hr x x x  2hr 4hr x x  2hr x x x 

2 15m 1hr 4hr 4hr  4hr x x x  2hr x x x  4hr x x x  2hr 4hr 4hr x 

3 1hr 4hr 4hr 4hr  2hr x x x  15m x x x  2hr x x x  1hr x x x 

4 15m 1hr 4hr 4hr  4hr x x x  2hr x x x  1hr x x x  1hr x x x 

5 15m 1hr 4hr 4hr  4hr x x x  1hr x x x  15m x x x  1hr x x x 

6 1hr 1hr 4hr 4hr  4hr x x x  15m x x x  4hr 4hr 4hr x  2hr 4hr x x 

7 1hr 2hr 4hr 4hr  2hr x x x  1hr 1hr x x  4hr x x x  2hr 2hr x x 

8 1hr 2hr 4hr 4hr  4hr x x x  1hr x x x  1hr x x x  15m 2hr 4hr 4hr 

9 15m 15m 4hr 4hr  2hr x x x  15m 2hr 4hr 4hr  2hr x x x  2hr 4hr 4hr 4hr 

10 1hr 1hr 4hr x  4hr x x x  15m x x x  4hr 4hr 4hr 4hr  1hr x x x 

11 1hr x x x  2hr x x x  1hr x x x  2hr x x x  2hr x x x 

12 15m x x x  4hr x x x  1hr x x x  1hr x x x  15m x x x 

     
 

    
 

    
 

    
 

    
a 
Prior data resolution has been given in 12 hour segments for each weather variable: rs1 - resolution for segment 1 (current-12 hours), rs2 - 

resolution for segment 2 (12-24 hours), rs3 - resolution for segment 3 (24-36 hours), rs4 - resolution for segment 4 (36-48 hours); ‘x’ indicates no 

prior data was included; 10,000 training patterns were used for fitness evaluation.
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Table 2.3: Accuracies (MAE
a
 s) of ANN models created using various approaches for one through twelve hour prediction horizons 

 

Prediction  

horizon 

(hour) 

Training dataset 

(
0
C) 

 
Selection dataset 

(
0
C) 

 
Evaluation dataset 

(
0
C) 

CDFR
b
 

model 

GASDR
c
 

 model 

EGASDR
d
 

model 

 

CDFR  

model 

GASDR  

model 

EGASDR 

model 

 

CDFR  

model 

GASDR  

model 

EGASDR 

model 

Existing 

model 
e 

% of  

improvement
f
  

1 0.566 0.547 0.543 
 

0.562 0.545 0.542 
 

0.587 0.568 0.564 0.562 3.98% 

2 0.886 0.877 -  0.889 0.859 -  0.902 0.899 - 0.918 0.31% 

3 1.130 1.103 - 
 

1.115 1.084 - 
 

1.149 1.122 - 1.190 2.34% 

4 1.309 1.288 1.268  1.279 1.260 1.246  1.325 1.294 1.264 1.423 4.59% 

5 1.469 1.430 - 
 

1.432 1.407 - 
 

1.482 1.446 - 1.629 2.47% 

6 1.595 1.571 - 
 

1.549 1.530 - 
 

1.605 1.567 - 1.798 2.39% 

7 1.699 1.703 - 
 

1.666 1.651 - 
 

1.714 1.702 - 1.940 0.67% 

8 1.785 1.770 1.773 
 

1.749 1.724 1.718 
 

1.812 1.766 1.773 2.072 2.55% 

9 1.867 1.863 - 
 

1.827 1.815 - 
 

1.868 1.854 - 2.193 0.73% 

10 1.942 1.913 - 
 

1.894 1.886 - 
 

1.951 1.899 - 2.299 2.65% 

11 1.963 2.025 1.927 
 

1.931 1.962 1.903 
 

1.957 2.025 1.932 2.395 1.29% 

12 2.036 2.047 2.027 
 

1.987 1.995 1.977 
 

2.053 2.037 2.018 2.458 1.70% 

a 
Mean Absolute Error. 

b 
Constant Duration (24 hours) with a Fixed Resolution (1 hour). 

c 
GA Selected Duration and Resolution. 

d 
Extended GA 

Selected Duration and Resolution. 
e 
Models created by Smith et al. (2009). 

f 
improvement in the most accurate model over CDFR model; Lower 

error between CDFR and GASDR models is bolded; Lowest error among CDFR, GASDR and EGASDR models is underlined.  
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Table 2.4: Prior data resolution determined by the extended GA 

 

Prediction  

horizon 

(hour) 

Air temperature 
 

Relative humidity 
 

Wind speed 
 

Solar radiation 
 

Rain fall 

rs
a

1 rs2 rs3 rs4 
 rs1 rs2 rs3 rs4 

 rs1 rs2 rs3 rs4 
 rs1 rs2 rs3 rs4 

 rs1 rs2 rs3 rs4 

     
 

    
 

    
 

    
 

    
1 15m 1hr 1hr x

  2hr x x x  2hr x x x  2hr 2hr x x  2hr 2hr 2hr x 

4 15m 1hr 4hr x  2hr 2hr x x  1hr 1hr 4hr 4hr  15m 4hr x x  1hr 1hr 1hr 4hr 

8 1hr 1hr 1hr x  1hr 4hr 4hr x  1hr x x x  1hr x x x  15m 4hr 4hr x 

11 15m 15m 4hr 4hr  4hr 4hr 4hr 4hr  2hr 4hr 4hr 4hr  1hr 4hr x x  1hr 4hr 4hr x 

12 15m 4hr 4hr 4hr  4hr x x x  15m 2hr 2hr 2hr  1hr x x x  2hr 4hr 4hr 4hr 

                         

a 
Prior data resolution has been given in 12 hour segments for each weather variable: rs1 - resolution for segment 1 (current-12 hours), rs2 - 

resolution for segment 2 (12-24 hours), rs3 - resolution for segment 3 (24-36 hours), rs4 - resolution for segment 4 (36-48 hours); ‘x’ indicates no 

prior data was included; 20,000 training patterns were used for fitness evaluation.
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Table 2.5: Coefficient of determination (R
2
) and Regression equation for the GASDR

a
 and 

CDFR
b
 models 

 

Prediction  

horizon 

(hour) 

 
R

2  
Linear fit 

 
GASDR / 

EGASDR
c
 

model 

CDFR  

model 

 
GASDR /  

EGASDR 

model 

CDFR  

model 

1
  0.9918 0.9913  Y = 0.183 + 0.990 * X Y = 0.241 + 0.989 * X 

2  0.9818 0.9817  Y = 0.583 + 0.973 * X Y = 0.436 + 0.980 * X 

3  0.9722 0.9713  Y = 0.755 + 0.961 * X Y = 0.448 + 0.969 * X 

4
  0.9649 0.9632  Y = 0.385 + 0.980 * X Y = 0.948 + 0.955 * X 

5  0.9562 0.9544  Y = 0.993 + 0.951 * X Y = 1.178 + 0.943 * X 

6  0.9483 0.9474  Y = 0.836 + 0.956 * X Y = 1.359 + 0.942 * X 

7  0.9392 0.9411  Y = 1.417 + 0.945 * X Y = 1.615 + 0.926 * X 

8  0.9350 0.9324  Y = 1.446 + 0.942 * X Y = 1.700 + 0.922 * X 

9  0.9278 0.9286  Y = 1.530 + 0.931 * X Y = 1.892 + 0.904 * X 

10  0.9256 0.9228  Y = 1.395 + 0.920 * X Y = 2.084 + 0.912 * X 

11
  

0.9184 0.9190 
 

Y = 2.135 + 0.904 * X Y = 1.758 + 0.917 * X 

12
  0.9151 0.9154  Y = 2.184 + 0.897 * X Y = 2.364 + 0.884 * X 

a 
GA Selected Duration and Resolution. 

b 
Constant Duration with a Fixed Resolution. 

c
 Extended GASDR 

(1, 4, 11 and 12 hour prediction horizons); Y = Predicted air temperature; X = Observed air temperature. 
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Fig. 2.1. Flow chart – Fitness evaluation of an individual in the GA population 
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Fig. 2.2. Local and global best fitness values for each GA generation for 6-hr prediction horizon 
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Fig. 2.3. MAE for each prediction horizon, CDFR, GASDR, and EGASDR models, Evaluation dataset 
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Fig. 2.4.1. Observed and Predicted air temperatures for the evaluation dataset for one through 

       six hour GASDR/EGASDR models (Dotted line represents the ideal case of Y = X) 
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2 hour GASDR model 
Y = 0.583 + 0.973 * X 
R

2
 = 0.9818 

 

3 hour GASDR model 
Y = 0.755 + 0.961 * X 
R

2
 = 0.9722 

 

5 hour GASDR model 
Y = 0.993 + 0.951 * X 
R

2
 = 0.9562 

 

6 hour GASDR model 
Y = 0.836 + 0.956 * X 
R

2
 = 0.9483 

 

1 hour EGASDR model 
Y = 0.183 + 0.990 * X 
R

2
 = 0.9918 

 

4 hour EGASDR model 
Y = 0.385 + 0.980 * X 
R

2
 = 0.9649 
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Fig. 2.4.2. Observed and Predicted air temperatures for the evaluation dataset for seven through 

       twelve hour GASDR/EGASDR models (Dotted line represents the ideal case of Y = X) 
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7 hour GASDR model 
Y = 1.417 + 0.945 * X 
R

2
 = 0.9392 

 

8 hour GASDR model 
Y = 1.446 + 0.942 * X 
R

2
 = 0.9354 

 

9 hour GASDR model 
Y = 1.530 + 0.931 * X 
R

2
 = 0.9278 

 

10 hour GASDR model 
Y = 1.395 + 0.920 * X 
R

2
 = 0.9256 

 

11 hour EGASDR model 
Y = 2.135 + 0.904 * X 
R

2
 = 0.9184 

 

12 hour EGASDR model 
Y = 2.184 + 0.897 * X 
R

2
 = 0.9151 
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CHAPTER 3 

COMPUTATIONAL EVOLUTIONARY APPROACHES TO REFINE INPUT DATA 

SELECTION FOR DEW POINT TEMPERATURE PREDICTION USING ARTIFICIAL 

NEURAL NETWORKS
2 
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Venkadesh, S., Potter, W. D., McClendon, R. W., and Hoogenboom, G. To be submitted to the International 

Journal of Computational Intelligence.
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Abstract 

 

Dew point temperature is an important weather variable that affects crop growth and 

development as well as many other processes in agricultural and ecological systems. Accurate 

prediction of dew point temperature is necessary to avoid severe economic losses due to weather 

events such as frost and freeze. Previous research focused on the development of artificial neural 

network (ANN) models to predict dew point temperature from one to twelve hours in advance. 

The inputs to these models included a constant duration of prior data with a fixed resolution for 

all atmospheric variables. The goal of the research herein was to develop more accurate ANN 

models to predict dew point temperature for one-hour, six-hour and twelve-hour prediction 

horizons. This study employed stochastic optimization techniques including the genetic 

algorithm (GA) and particle swarm optimization (PSO) to refine the way in which the prior data 

were included as inputs for the ANN. Specific objectives of this research were to (i) determine 

the preferred duration and resolution of input prior data using the GA and PSO based 

approaches, and (ii) study the effect on the ANN prediction accuracy when eliminating the 

constraint of every weather variable being represented based on the PSO search. The PSO based 

approach that did not mandate the inclusion of at least some prior observations for every weather 

variable created an ANN model with a Mean Absolute Error (MAE) of 0.533 
0
C on the 

evaluation patterns for the one hour prediction horizon. This was a slight improvement from the 

accuracy of the ANN model created based on the existing constant duration and fixed resolution 

approach which provided an MAE of 0.535 
0
C on the same set of evaluation patterns. By 

exploiting a variable resolution scheme for the input prior data, this study found that for the 

accurate prediction of dew point temperature for the one-hour prediction horizon, the prior data 

for relative humidity and wind speed (included in the ANN inputs by the existing approach) were 
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not required, if the input prior data for other weather variables were included with appropriate 

resolutions. This study also found that the highest resolution air temperature data, in some cases 

along with relative humidity, complemented the highest resolution dew point temperature data 

for the inputs for all the prediction horizons considered in this study. Future work could study the 

effects of various evolutionary parameters involved in this research. 

I.       Introduction 

Dew point is the temperature at which the water vapor in the air will condense into water at a 

constant atmospheric pressure. Dew point temperature is an essential weather variable for 

estimating various agrometeorological parameters. Several agronomic, hydrological, ecological, 

and meteorological models require dew point temperature as input (Hubbard et al., 2003). White-

Newsome et al. (2012) used outdoor air temperature and dew point temperature for the 

prediction of indoor heat to mitigate the effects of indoor heat exposure among the elderly people 

in Detroit. Dew point temperature is one of the weather variables that affects crop growth and 

has been considered as an input for the simulation of crop production (Hoogenboom, 2000a).  

The Georgia Automated Environmental Monitoring Network (AEMN) was established in 

1991, and currently consists of more than 80 weather stations distributed throughout Georgia 

(Hoogenboom, 2000b). These solar-powered stations record atmospheric variables at a one 

second frequency. The weather variables that are being monitored include air temperature, dew 

point temperature, relative humidity, vapor pressure, wind speed, wind direction, solar radiation 

and rainfall. These data were summarized as hourly averages and totals until March 1996. 

Subsequently the aggregated interval was reduced to fifteen minute averages. The collection of 
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dew point temperature data was started in 2002. These observations are downloaded to a server 

for data processing, and immediately made available on the website www.georgiaweather.net. 

ZareNezhad and Aminian (2011) developed an ANN model to predict the dew points of 

acidic combustion gases to prevent corrosion failures in process and power plants. Their model 

was trained using the Levenberg–Marquardt back propagation algorithm and a trial-and-error 

approach was taken to determine the best network architecture. Shank et al. (2008a) created 

ANN models to predict dew point temperature up to twelve hours in advance using the weather 

variables dew point temperature, relative humidity, solar radiation, air temperature, wind speed, 

and vapor pressure as inputs. The observations were partitioned into different datasets for model 

development and evaluation purposes. Shank et al. (2008) created ensemble ANN models to 

improve the accuracy of dew point temperature prediction. These ANN models were 

implemented on the website www.georgiaweather.net. Smith et al. (2009) developed ANN 

models to predict air temperature for one through twelve hour prediction horizons. These ANN 

models were also implemented on the same website, where the predictions are available for both 

air and dew point temperatures for every weather station that is part of the Georgia. These hourly 

predictions are made from one to twelve hours ahead and updated every 15 minutes. Chevalier et 

al. (2012) created a decision support system to interpret these air temperature and dew point 

temperature predictions along with the observed wind speed as one of the five frost warnings 

determined related to blueberries and peaches.  

In the previous research conducted by Shank et al. (2008a), the duration of prior weather 

information for the inputs to the ANN model was determined by a limited iterative search for 

each prediction horizon. For this search, the duration was varied from six to thirty hours in 

increments of six hours for each prediction horizon. It was assumed that all six weather variables 
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were required for the accurate prediction of dew point temperature for all prediction horizons. 

Thus, a single duration was used to include the prior data for all six weather variables. Although 

the observed data were available for every fifteen minutes, prior research only included the data 

in one hour intervals and the effect of including the prior data with either a shorter or a longer 

interval than one hour was not explored. In this paper, the term „resolution‟ will be used further, 

instead of „interval‟. For instance, a 15-minute resolution or the highest resolution will denote 

that the prior data were included in fifteen minute intervals and a 4-hour resolution will denote 

that the prior data were included in four hour intervals. 

In several studies, evolutionary approaches such as the genetic algorithm (GA) and Particle 

Swarm Optimization (PSO) have been coupled with ANN techniques for tasks such as training 

the ANN, and determining the preferred network architecture etc. The PSO is a stochastic 

optimization technique introduced by Eberhart & Kennedy (1995). Like evolutionary algorithms, 

PSO is a population based search technique that begins with a set of randomly initialized 

particles each of which represents a candidate solution. During each iteration, a velocity is 

applied to a particle to update its position in the search space. The velocity of a particle is 

calculated based on two factors: the local best position, which is the best position that the particle 

has achieved so far (Plb), and the global best position which is the position of the best particle in 

the current population (Pgb). The velocity is controlled by cognitive (C1) and social (C2) 

coefficients which are applied to Plb and Pgb respectively, and an inertial weight (W). The 

velocity (Vid) and the position (Xid) of the d
th

 dimension of the i
th

 particle in the population are 

updated using the following two equations: 

Vid = W * Vid + C1 * R1 * (Plb - Xid) + C2 * R2 * (Pgb - Xid)…. (1) 

Xid = Xid + Vid .... (2) 
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where, R1 and R2 are two randomly generated numbers. 

Stanley et al. (2002) presented a method named NEAT (Neuro Evolution of Augmenting 

Topologies), which enabled parallel evolution of both network architecture and connection 

weights using an evolutionary algorithm. Aijun et al. (2004) used a GA to optimize the chemical 

vapor infiltration (CVI) processing parameters of Carbon/Carbon composites. The fitness 

function of their GA evaluated ANNs based on the candidate input parameters of the network. 

Mohebbi et al. (2011) coupled a GA with the ANN to estimate the moisture content of dried 

banana. Their GA evolved the ANN parameters such as the number of hidden layers, and the 

number of hidden nodes, learning rate and momentum for each hidden layer. Wu & Chen (2009) 

created nonparametric regression ensemble models for rainfall forecasting by coupling PSO with 

the ANN. In their study the PSO was used to evolve the ANN structure and the weights. Chau 

(2007) applied the PSO for the training of a three-layered perceptron network to predict the 

outcome of the litigation process in construction claims and concluded that the PSO-based 

perceptron network exhibited better performance than the backpropagation-based perceptron 

network with regard to the convergence rate of training and the prediction accuracy. Lazzús 

(2011) created an ANN model to estimate autoignition temperatures of organic compounds by 

training the models using the PSO. In his study, each particle in the PSO population represented 

the connection weights and was evaluated using a predefined fitness function which incorporated 

the resulting ANN accuracy. 

Venkadesh et al. (2012) applied a genetic algorithm (GA) to determine the duration and 

resolution of prior data for each input weather variable to predict air temperature for one through 

twelve hour prediction horizons. They assumed that all the input weather variables that were 

considered were necessary to accurately predict air temperature. Therefore, one of the constraints 
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that was added to the GA in evolving the preferred duration and resolutions was to include at 

least twelve hours of prior data (the shortest duration considered) with 4-hr resolution (the lowest 

resolution considered) for each weather variable. The previous GA based approach created ANN 

models that provided lower error than the ANN models created based on the existing „constant 

duration with a fixed resolution‟ approach.  

The goal of this research project was to improve the dew point temperature prediction 

accuracy of the existing ANN models. Specific objectives were: for the one-hour, six-hour and 

twelve-hour prediction horizons, (i) determine the preferred duration and resolution of input 

prior data using the GA and PSO based approaches, and (ii) study the effect on the ANN 

prediction accuracy while eliminating the constraint of every weather variable being represented 

based on the PSO search. 

II. Methodology 

This study consisted of an input optimization phase and a final model development phase. 

The input optimization phase aimed at determining the duration and the resolution of prior data 

for each input weather variable using GA and PSO searches. The final model development phase 

created the ANN models to be implemented for practical use, using the duration and the 

resolution identified in the input optimization phase and compared the results of this study with 

the existing ANN models for dew point temperature prediction developed by Shank et al. 

(2008a). All the ANNs were developed with the Ward-style architecture having three slabs in the 

hidden layer using Gaussian, Gaussian complement and hyperbolic tangent activation functions. 

Each ANN model was trained using the error back-propagation algorithm, a learning rate of 0.1, 

an initial weight range of ±0.15 and a range of (0.1, 0.9) to scale the inputs. These values were 
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chosen based on the previous work by Shank et al. (2008a) in which dew point temperature 

prediction models were created. Mean absolute error (MAE) was the measure of accuracy for 

these ANN models. 

The term model refers to an ANN with a certain number of input, hidden and output nodes 

with a specific set of input variables resulting from a particular duration and resolution of prior 

data. During model development, several network instantiations were created for a model which 

differed only in the initial random weights and the order in which the training patterns were 

presented. Smith et al. (2006) showed that training and evaluating multiple instantiations of the 

same model provided a better foundation for the comparison of model accuracies than a single 

network instantiation. 

1. Input patterns and Datasets 

A pattern is a set of values corresponding to the input and output nodes of the ANN model. 

The weather variables of dew point temperature, relative humidity, air temperature, wind speed, 

solar radiation and vapor pressure observed at different points in the time series were used to 

create an input pattern. These weather variables, observed at the time of prediction, were always 

included in the inputs. The input pattern also included the rates of change calculated as follows: 

local rates of change of a weather variable were the differences between every two adjacent 

observations that were included in the time series. Eight fuzzy logic variables to represent the 

time of day and the day of year information were also included in the input pattern as done by 

Shank et al. (2008a). 

The variable resolution scheme employed in Venkadesh et al. (2012) to represent the 

duration and resolution for each weather variable for air temperature prediction was used in this 
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study. However, unlike the previous work, this study considered only twelve hours of total 

duration of prior data for each weather variable for the one hour prediction horizon. This was 

because Shank et al. (2008a) concluded that only six hours of prior data was required for the 

accurate prediction of dew point temperature for the one hour prediction horizon. Since their 

conclusion was based on including a constant total duration of prior data for all six weather 

variables during the search for the preferred total duration of prior data, the current study allowed 

twelve hours of prior duration for each weather variable for the one hour prediction horizon to 

determine if the ANN model could take advantage of the additional information past six hours in 

the prior data for some weather variables. Hence, each of the six weather variables represented 

the resolutions in three segments of four hour duration (three segments of four hours each 

equates to twelve hours) for the one hour prediction horizon. Since the existing ANN models for 

six and twelve hour prediction horizons were developed using eighteen hours of prior data, the 

GA and the PSO search included a maximum of 48 hours of prior data for each weather variable. 

Thus, the maximum duration of 48 hours for the prior data allowed four segments of twelve hour 

duration for each weather variable for six- and twelve-hour prediction horizons. The various 

resolutions considered in this study were 15-minute, 1-hour, 2-hour, and 4-hour.  

Data collected from 2002 through 2010 at various weather stations geographically distributed 

throughout the state of Georgia were partitioned into model development and evaluation 

datasets. The ANN models were created using the patterns from the development dataset. Once 

these models were developed, they were evaluated on the patterns which were not used during 

the model development. Therefore, the evaluation dataset included years and locations which 

were mutually exclusive of the development dataset. The development dataset was further 

partitioned into training and selection datasets. The patterns from the training dataset were used 
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for ANN weight adjustment using back-propagation, and the patterns from the selection dataset 

were only used in feed-forward mode to choose the most accurate network instantiation for a 

model. The training and selection datasets shared the same years of data, but differed in the 

included locations. Table 1 shows the dataset partitioning by years and locations. Using a 

stopping dataset to determine when to end the training was found to be unnecessary by Smith et 

al. (2006) as the network performance on stopping and training datasets was qualitatively 

similar. 

2. The Input Optimization phase 

The overall goal of the input optimization phase was to determine the duration and the 

resolution of prior data for each weather variable using the GA and the PSO. The GA and the 

PSO searches determined the duration and the resolutions of prior data based on the accuracy of 

the ANNs trained and evaluated on a smaller number patterns sampled from the training and the 

selection dataset respectively. During the course of each of the GA and the PSO runs, more than 

3000 ANN models were created with the objective of determining the preferred duration and 

resolution.  

From a set of preliminary runs it was found that the preferred values for the cognitive (C1) 

and social (C2) coefficients were 2.2 and 1.8 respectively when the velocity limit (Vlim) of 2.0 

was used for the PSO algorithm. These preliminary runs were made for the one hour prediction 

horizon using only 10,000 ANN training patterns for fitness evaluation. Shi & Eberhart (2009) 

found that for a number of PSO applications, an inertia weight in the range (0.9, 1.2) resulted in a 

higher chance of finding the global optimum within a reasonable number of iterations, when the 

maximum velocity allowed was set as two. Hence a value of 0.9 was used for the inertia weight 
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for all the subsequent PSO runs in this study. The PSO runs were made for 150 iterations with a 

swarm size of 50. The resolutions of 15-min, 1-hr, 2-hr and 4-hr were represented as the real 

values of 0.25, 1.0, 2.0 and 4.0 respectively in a particle. Once the computed velocity was 

applied to a segment of a particle, the new position of the segment was adjusted to the nearest 

valid resolution. For example, a velocity of 0.70 applied to a 15-min resolution (0.25) would 

result in 1-hr resolution, and a velocity of -3.9 applied to a 4-hr resolution (4.0) would result in 

15-min resolution. 

An individual in the GA population consisted of one component for each weather variable 

totaling to six components, similar to the previous study by Venkadesh et al. (2012). A one-point 

component level crossover with a probability of 0.5 and one of two mutation schemes with a 

probability of 0.3 were applied at the component level for each component. A step mutation 

either increased or decreased the resolution of a randomly chosen segment by one step, and a 

length mutation either removed the last segment, or added a new segment with a randomly 

chosen resolution. Both mutation schemes had equal selection probabilities. 

It was observed in Venkadesh et al. (2012) that sampling 20,000 patterns from each training 

and selection dataset for fitness evaluation as opposed to 10,000 samples was helpful in evolving 

the solutions that resulted in more accurate final ANN models. Therefore, the current study used 

20,000 patterns for the fitness evaluation in both the GA and the PSO. However, using 20,000 

patterns for fitness evaluations required roughly two weeks of run time for the GA runs in the 

previous study. Hence, the current study was limited to only one-, six- and twelve-hour 

prediction horizons. The number of network trials was also reduced to five as opposed to ten 

used in the previous study to expedite the runs. 
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In the first set of experiments, the GA and the PSO runs were made for one, six and twelve 

hour prediction horizons. These runs included a constraint that an input weather variable would 

have at least one segment with the lowest resolution (4-hr) for each weather variable. Therefore, 

inclusion of four hours of prior data with 4-hr resolution (one prior observation) was the 

minimum requirement enforced for each weather variable for the one-hour prediction horizon.  

Similarly, for the six- and twelve-hour prediction horizons, inclusion of twelve hours of prior 

data with 4-hr resolution (3 prior observations) was the minimum requirement enforced for each 

weather variable. The variation operators in these runs were not allowed to modify the duration 

and resolution for a weather variable beyond these minimum bounds which would result in not 

including any prior observation for a weather variable. The PSO with this constraint will be 

denoted as PSO1 herein. 

In the second set of experiments, the effect of eliminating the above constraint during the 

search for the duration and resolution was studied. This portion of the study was performed using 

only the PSO search, since the PSO generally converges faster than the GA. The PSO runs were 

made for one, six and twelve hour prediction horizons without enforcing the minimum 

requirement to include at least one segment of prior data with the lowest resolution. During a 

run, if the new velocity of the first segment had to lower its resolution from a value of 4-hr, no 

prior observations from that particular weather variable were included in the inputs. This PSO 

without the constraint will be denoted as PSO2 herein. 

3. Final model development phase 

In this phase, the final ANN models were developed and evaluated for one-, six- and twelve-

hour prediction horizons using a larger number of patterns sampled from the datasets (Table 1). 

For each prediction horizon, four final ANN models were developed: The ANN models trained 
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based on the duration and resolution determined by the GA were named the GASDR (GA 

Selected Duration and Resolution) model. The ANN models trained based on the duration and 

resolution determined by the PSO that had the constraint to include at least one segment of prior 

data with the lowest resolution were named the PSOSDR1 (PSO Selected Duration and 

Resolution) model. The ANN models trained based on the duration and resolution determined by 

the PSO that did not add the above constraint were named the PSOSDR2 model. Finally, the 

ANN models created using the methodology followed by Shank et al. (2008a) by including a 

constant duration of prior data with a fixed resolution for all weather variables as inputs were 

named the CDFR (Constant Duration with a Fixed Resolution) model. The training dataset in 

this study consisted of data from different locations and years than the ones used in the previous 

study (Shank et al., 2008a). Therefore, the three CDFR models were evaluated on the evaluation 

dataset used in the previous study (data from the year 2005) to compare their accuracies with 

those of the existing models. This comparison was performed to ensure that the CDFR models 

which were used as the baseline models in this study were not less accurate than the existing 

models. 

For each prediction horizon, 300,000 randomly sampled patterns from the training dataset 

were used for ANN training. In the same way, 100,000 patterns were randomly sampled from the 

selection dataset for ANN selection, and 1,000,000 patterns were randomly sampled from the 

evaluation dataset for model evaluation. For each prediction horizon, 30 networks were 

instantiated and trained using the training dataset. Then, the selection dataset patterns were 

presented to each network instantiation in feed-forward-only mode. The most accurate network 

instantiation on the selection dataset was selected to represent the ANN model for that prediction 

horizon. All the final ANN models were developed using 20 hidden nodes per slab, the value 
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used by Shank et al. (2008a). The GASDR, PSOSDR1 and PSOSDR2 models were evaluated on 

the evaluation dataset and their MAEs were compared with the MAE of the CDFR model for 

each prediction horizon.  

III.      Results 

In the input optimization phase for the one-hour prediction horizon, the prior data past 

four hours were generally not preferred for any weather variable to be included in the inputs 

(Table 2). The exceptions were that the PSO1 included one observation past four hours (4-hr 

resolution for the second segment, where the duration of a segment is four hours) for relative 

humidity and the GA and the PSO1 included two observations past four hours for solar radiation. 

The PSO1 which added the constraint to include at least one segment with 4-hr resolution 

included one prior observation for wind speed and two prior observations for relative humidity, 

but the PSO2 which did not include the above constraint did not include any prior data for wind 

speed and relative humidity. Both PSO1 and PSO2 preferred the highest resolution (15-min) for 

the prior dew point temperature data. Certain inconsistencies could be observed from the 

duration and resolution included for a weather variable across the three different search 

techniques considered. For example, vapor pressure was included with three different resolutions 

by the three approaches. This inconsistency could be attributed to the possibility of different 

points in the search space being similarly fit, and the fact that these search techniques are 

stochastic and start with a different initial population.  

Similarly, for the six-hour prediction horizon, the prior data past twelve hours were not 

generally preferred for any weather variable (Table 3). However, the PSO1 included the second 

segment for solar radiation, air temperature and vapor pressure with the lowest resolution 
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(Segment duration was twelve hours for the six-hour prediction horizon, resulting in three 

observations if the lowest resolution was preferred for a segment). The GA preferred the highest 

resolution for the prior dew point temperature data where as both the PSO1 and PSO2 preferred 

the highest resolution for the prior air temperature data. The PSO2 also preferred the highest 

resolution for the prior relative humidity data, and did not include any prior data for dew point 

temperature. Since the dew point temperature is calculated from the air temperature and relative 

humidity, the inclusion of these two weather variables with the highest resolution might have 

resulted in not requiring any prior dew point temperature data by the PSO2.  

 For the twelve-hour prediction horizon, longer durations of prior data were preferred in 

some cases (Table 4). The GA preferred 48 hours of prior data for air temperature and both the 

PSO1 and PSO2 included the prior data for solar radiation past 24 hours. However, no prior data 

were included past twelve hours with a resolution higher than the lowest resolution for any 

weather variable. All three algorithms preferred the highest resolution for the first segment of air 

temperature, and lower resolutions for the dew point temperature segments (Segment duration 

was twelve hours for the twelve-hour prediction horizon). The PSO2 did not include any prior 

data for relative humidity and vapor pressure. A general observation from the results of one-

hour, six-hour and twelve-hour prediction horizons was that the highest resolution air 

temperature data, in some cases along with relative humidity, complemented the highest 

resolution dew point temperature data for the inputs: In all the cases, except for the GA for the 

one-hour prediction horizon, either some prior dew point temperature observations were included 

with the highest resolution, or some prior air temperature observations, in some cases along with 

relative humidity, were included with the highest resolution, but not both.  
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 In the final model development phase, the CDFR models were more accurate than the 

existing models for all three prediction horizons (Table 5). This accuracy improvement was due 

to the inclusion of data from six years for the ANN training, whereas only three years of data 

were available for the ANN training in the previous study. Among the four approaches 

considered in this study for the one-hour prediction horizon, the PSOSDR2 and PSOSDR1 

models provided the lowest MAE‟s on the training and selection datasets respectively (Table 6). 

However, for the six and twelve hour prediction horizons the CDFR models provided the lowest 

MAE‟s on both the training and selection datasets. This trend was in general observed from the 

evaluation dataset MAE‟s as well. On the evaluation dataset, among the three new approaches 

considered in this study (GA, PSO1 and PSO2), the PSO2 which did not add the constraint to 

include at least one segment for a weather variable created the most accurate model (PSOSDR2) 

for the one-hour prediction horizon. Among these three new approaches, the PSOSDR1 and 

GASDR models created by the GA and PSO1 based approaches which added the constraint to 

include at least one segment for a weather variable were the most accurate models respectively 

for the six- and twelve-hour prediction horizons. Therefore, eliminating the constraint of every 

applicable weather variable being represented for the ANN inputs did not improve the accuracy 

from the approaches that included this constraint for the six- and twelve-hour prediction 

horizons. 

The PSOSDR2 model for the one-hour prediction horizon provided an MAE of 0.533 
0
C 

on the evaluation dataset, a slight improvement from the corresponding CDFR model‟s MAE of 

0.535 
0
C (Table 6). It should be noted that unlike the previous approach by Shank et al. (2008a), 

this MAE was obtained by the one hour PSOSDR2 model without including any prior data inputs 

for relative humidity and wind speed. This implied that prior relative humidity and wind speed 



 
 

54 
 

observations were not required for the accurate prediction of dew point temperature one hour in 

advance, if the prior input observations for dew point temperature, air temperature, solar 

radiation and vapor pressure were included with appropriate resolutions. However, for the higher 

prediction horizons of six-hour and twelve-hour, the CDFR models provided the lowest MAE‟s 

on the evaluation dataset among the four approaches considered. It was concluded that the search 

for the six-hour and twelve-hour prediction horizons would require a less restricted parameter 

setting such as a larger population size, and an increased number of training patterns for the 

fitness evaluation, since the prediction becomes more problematic for the higher prediction 

horizons. However, because of the time and working memory constraints, this study could not 

exploit a more resource-intensive search to determine the preferred duration and resolutions for 

the six-hour and twelve-hour prediction horizons. Therefore, the PSOSDR2 model for the one-

hour prediction horizon and the CDFR models for the six- and twelve-hour prediction horizons 

were selected as the final models. 

A strong correlation between the observed and predicted dew point temperature values 

was observed for the lowest (one hour) prediction horizon with a coefficient of determination 

(R
2
) of 0.9926, and the predictions from the twelve hour model had an R

2
 value of 0.8946 as 

shown in Figures 1a through 1c. The dotted line represents the ideal case of the 1:1 line of fit of a 

hypothetical model. The slopes of the best line of fit for the one-, six-, and twelve-hour 

prediction horizon were 0.996, 0.951, and 0.898 respectively. The one-, six-, and twelve-hour 

prediction horizons had the best line of fit with a Y-intercept of 0.024, 0.728, and 1.680 

respectively. 
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IV.      Summary and Future work 

This study compared three approaches to determine the input prior data duration and 

resolutions for various weather variables to predict dew point temperature with the existing 

approach. The first and second approaches employed a GA and PSO respectively and mandated 

the inclusion of some prior data for every weather variable and the third approach employed a 

PSO technique which did not incorporate this constraint. This study was performed for the one-

hour, six-hour and twelve-hour prediction horizons. The ANN models based on the existing 

constant duration and fixed resolution approach were recreated using the same datasets used to 

create the ANN models based on the new approaches for a fair comparison. The GA and PSO 

based approaches created the ANN models with accuracies comparable to those of the ANN 

models based on the existing approach. This study found that for the accurate prediction of dew 

point temperature for a lower prediction horizon, the prior data for relative humidity and wind 

speed (included in the ANN inputs by the existing approach) were not required, if the input prior 

data for other weather variables were included with appropriate resolutions. This study also 

found that for the dew point temperature prediction for any prediction horizon, the highest 

resolution air temperature data, in some cases along with relative humidity, and the highest 

resolution dew point temperature data were complementary to each other for the ANN inputs. 

With additional computational resources, it might be possible to create more accurate models for 

each prediction horizon. Future work could focus on fine-tuning the GA parameters such as the 

population size, and variation operators and their probabilities, and the PSO parameters such as 

the swarm size, inertia weight, and social and cognitive coefficients for each prediction horizon. 

Future work could use a less restricted parameter setting for the fitness evaluation such as more 

than 20,000 patterns for the ANN training and more random network instantiations. The effects 
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of these fitness evaluation parameters on creating more accurate ANN models for the higher 

prediction horizons could also be studied. 
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Table 3.1: Dataset partitioning by years and locations 

 

 

Approximate 

Dataset    Sites    Years   number of  

observations 

 

    Atlanta, Brunswick, Pine Mountain,  

Covington, Dallas, Dawson, Dearing, 2002 

Training Duluth, Homerville, Oakwood,   2003 2,500,000 

Shellman, Tifton, Tiger, Woodbine  2004  

Development         2005 

 Alma, Arabi, Williamson, Bowen,  2007 

Selection Dempsey, Dixie, Eatonton, Georgetown, 2009 2,500,000 

Griffin, Howard, Jeffersonville,  

Lafayette, Plains, Sparta, Tennille 

 

Alapaha, Alpharetta, Arlington,  

Attapulgus, Blue Ridge, Byromville,  2006 

Cairo, Calhoun, Camilla, Clarks Hill,  2008 2,500,000 

Evaluation  Cordele, Danville, Douglas, Ellijay,  2010 

Moultrie, Nahunta, Newton, Odum,  

Ossabaw, Sasser, Savannah, Valdosta,  

Vidalia 
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Table 3.2: Prior data resolution in four hour segments for the one-hour prediction horizon selected by the GA and PSO 
 

Algorithm 

Dew point 

temperature
a 

 

Relative 

humidity 

 

Solar radiation 

 

Air 

temperature 

 

Wind speed 

 

Vapor 

pressure 

Duration of 12hrs 
 

Duration of 12hrs 
 

Duration of 12hrs 
 

Duration of 12hrs 
 

Duration of 12hrs 
 

Duration of 12hrs 

GA 2hr
 

x x 
 

2hr x x 
 

2hr 2hr x 
 

1hr x x 
 

15m x x 
 

1hr x x 

PSO1 15m x x 
 

4hr 4hr x 
 

4hr 4hr 4hr 
 

4hr x x 
 

4hr x x 
 

15m x x 

PSO2 15m x x 
 

x x x 
 

15m x x 
 

4hr x x 
 

x x x 
 

2hr x x 

a 
A weather variable had three segments of 4 hour duration each. The first, second and third segments correspond, respectively, to the current-4 hours, 4-8 hours, 

and 8-12 hours of prior data; The GA and PSO1 added a constraint to include at least one segment with 4-hr resolution for each weather variable. PSO2 did not 

include this constraint; ‘x’ indicates no prior data was included for that segment; A total of 20,000 training patterns were used for fitness evaluation. 
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Table 3.3: Prior data resolution in twelve hour segments for the six-hour prediction horizon selected by the GA and PSO 
 

Algorithm 

Dew point 

temperature
a 

 
Relative 

humidity 

 
Solar 

radiation 

 
Air 

temperature 

 

Wind speed 

 
Vapor 

pressure 

Duration of 48hrs 
 

Duration of 48hrs 
 

Duration of 48hrs 
 

Duration of 48hrs 
 

Duration of 48hrs 
 

Duration of 48hrs 

GA 15m x x x 
 

4hr x x x 
 

2hr x x x 
 

1hr x x x 
 

2hr x x x 
 

4hr x x x 

PSO1 4hr x x x 
 

4hr x x x 
 

4hr 4hr x x 
 

15m 4hr x x 
 

4hr x x x 
 

4hr 4hr x x 

PSO2 x x x x 
 

15m x x x 
 

2hr x x x 
 

15m x x x 
 

4hr x x x 
 

4hr x x x 

a 
A weather variable had four segments of 12 hour duration each. The first, second, third and fourth segments correspond, respectively, to the current-12 hours, 

12-24 hours, 24-36 hours, and 36-48 hours of prior data; The GA and PSO1 added a constraint to include at least one segment with 4-hr resolution for each 

weather variable. PSO2 did not include this constraint; „x’ indicates no prior data was included for that segment; A total of 20,000 training patterns were used for 

fitness evaluation. 
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Table 3.4: Prior data resolution in twelve hour segments for the twelve-hour prediction horizon selected by the GA and PSO 
 

Algorithm 

Dew point 

temperature
a 

 

Relative 

humidity 

 

Solar radiation 

 

Air temperature 

 

Wind speed 

 

Vapor 

pressure 

Duration of 48hrs 
 

Duration of 48hrs 
 

Duration of 48hrs 
 

Duration of 48hrs 
 

Duration of 48hrs 
 

Duration of 48hrs 

GA 1hr x x x 
 

2hr x x x 
 

1hr x x x 
 

15m 4hr 4hr 4hr 
 

2hr x x x 
 

1hr x x x 

PSO1 4hr 4hr x x 
 

15m x x x 
 

1hr 4hr 4hr 4hr 
 

15m x x x 
 

4hr x x x 
 

4hr x x x 

PSO2 2hr x x x 
 

x x x x 
 

4hr 4hr 4hr x 
 

15m x x x 
 

1hr x x x 
 

x x x x 

a 
A weather variable had four segments of 12 hour duration each. The first, second, third and fourth segments correspond, respectively, to the current-12 hours, 

12-24 hours, 24-36 hours, and 36-48 hours of prior data; The GA and PSO1 added a constraint to include at least one segment with 4-hr resolution for each 

weather variable. PSO2 did not include this constraint; „x’ indicates no prior data was included for that segment; A total of 20,000 training patterns were used for 

fitness evaluation. 
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Table 3.5: Accuracies (MAEs) of the Existing models and CDFR models on the previous 

evaluation dataset
1 

 

Prediction  

horizon 

(hour) 

Existing  

model
1 

(
0
C) 

CDFR  

model
2 

(
0
C) 

1 0.550 0.528 

6 1.566 1.483 

12 2.281 2.089 

1
Shank et al. (2008a). 

2
Constant Duration with a Fixed Resolution. 

 



 
 

64 
 

 

Table 3.6: Accuracies (MAE‟s) of the ANN models created based on different approaches for each prediction horizon 

 

Prediction 

horizon 

(hr) 

Training dataset 

 (
0
C) 

  

Selection dataset 

(
0
C) 

  

Evaluation dataset 

(
0
C) 

GASDR  

modela 
PSOSDR1 

modelb 
PSOSDR2 

modelc 
CDFR  

model 

  

GASDR  

model 

PSOSDR1 

model 

PSOSDR2 

model 

CDFR  

model 

  

GASDR  

model 

PSOSDR1 

model 

PSOSDR2 

model 

CDFR  

model 

1 0.511 0.509 0.505 0.511 
  

0.510 0.505 0.507 0.508 
  

0.540 0.535 0.533 0.535 

6 1.504 1.508 1.521 1.473 
  

1.499 1.487 1.513 1.479 
  

1.533 1.508 1.548 1.489 

12 2.134 2.161 2.158 2.109 
  

2.121 2.148 2.153 2.091 
  

2.123 2.162 2.162 2.102 

a
 GA Selected Duration and Resolution. 

b
 PSO (which had the added constraint to include at least one segment with 4-hr resolution for a weather variable) 

Selected Duration and Resolution. 
c 
PSO (which did not add the above constraint) Selected Duration and Resolution; Highest accuracy results are bolded. 
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Fig.  3.1.1. Observed and Predicted air temperatures for the evaluation dataset for the one-hour 

PSOSDR2 model (Dotted line represents the ideal case of Y = X) 
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Fig.  3.1.2. Observed and Predicted air temperatures for the evaluation dataset for the six-hour 

CDFR model (Dotted line represents the ideal case of Y = X) 
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Fig. 3.1.3. Observed and Predicted air temperatures for the evaluation dataset for the twelve-hour 

CDFR model (Dotted line represents the ideal case of Y = X) 

 

 

 

 

 

 

 

 

 

 

 

Observed dew point temperature (
0
C) 

P
re

d
ic

te
d

 d
ew

 p
o

in
t 

te
m

p
er

at
u

re
 (

0
C

) 

12 hour model 

Y = 1.680 + 0.898 * X 

R
2
 = 0.8946 

 



 
 

68 
 

CHAPTER 4 

SUMMARY AND CONCLUSIONS 

 

The goal of this research was to improve the prediction accuracies of the existing air 

temperature and dew point temperature ANN models. Specific objectives of this research were to 

determine the preferred duration and resolution of prior data for each weather variable using 

computational evolutionary approaches and compare the accuracies of the ANN models created 

based on various approaches. 

The objective of the research described in chapter 2 was to perform a GA search to 

determine the preferred duration and resolution of prior data for each weather variable to be 

included as inputs for the air temperature prediction ANN models. This study consisted of an 

evolutionary phase and a final model development phase. The evolutionary phase determined the 

duration and various resolutions for each input weather variable and for each prediction horizon 

using the GA search. The final model development phase trained the ANN model using a larger 

dataset based on the GA selected duration and resolution for each prediction horizon. The ANN 

models based on the existing constant duration and fixed resolution approach employed by Smith 

et al. (2009) were also recreated using the same datasets used to create the ANN models based on 

the new approach for a fair comparison. Using the GA based approach, the highest improvement 

in the accuracy was achieved at the one hour prediction horizon with a 3.22% improvement, 

compared to the accuracy of the model created based on the existing approach. The GA based 

approach with a restricted parameter setting such as 10,000 ANN training patterns and ten 



 
 

69 
 

random network instantiations for the fitness evaluation generally proved to produce more 

accurate models for one- through ten-hour prediction horizons, but did not produce more 

accurate models for the eleven- and twelve-hour prediction horizons. This problem was 

addressed using an approach that ran the GA with a less restricted parameter setting such as 

20,000 ANN training patterns and thirty random network instantiations for the fitness evaluation 

for the eleven- and twelve-hour prediction horizons. The eleven- and twelve-hour ANN models 

created based on this extended GA approach were more accurate than the existing models. Thus 

the GA based approach to determine the duration and resolution of input prior data for each 

weather variable proved to create more accurate ANN models for all prediction horizons. 

The specific objective of the research described in chapter 3 was to compare the 

accuracies of various approaches to determine the input prior data duration and resolutions for 

various weather variables to predict dew point temperature with those of the existing approach. 

The first and second approaches employed a GA and PSO respectively and had a constraint of 

every weather variable being included in the ANN inputs. The third approach employed a PSO 

technique which did not incorporate the above constraint. This study was performed for the one-

hour, six-hour and twelve-hour prediction horizons. The ANN models based on the existing 

constant duration and fixed resolution approach employed by Shank et al. (2008a) were recreated 

using the same datasets used to create the ANN models based on the new approaches for a fair 

comparison. The GA and PSO based approaches created the ANN models with accuracies 

comparable to those of the ANN models created based on the existing approach. This study 

found that for the accurate prediction of dew point temperature for the one-hour prediction 

horizon, the prior data for relative humidity and wind speed were not required, if the input prior 

data for other weather variables were included with appropriate resolutions. This study also 
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found that for the dew point temperature prediction for any prediction horizon, the highest 

resolution air temperature data, in some cases along with relative humidity, complemented the 

highest resolution dew point temperature data for the ANN inputs. 

Future work could explore various computational parameters involved in this study. The 

possible parameters to explore in the GA based approach include the GA population size, the 

crossover and the mutation operators and their probabilities, and the number of segments in the 

prior data for a weather variable. For the PSO based approach, the parameters such as the swarm 

size, inertia weight, and social and cognitive coefficients could be fine-tuned for each prediction 

horizon. With additional computational resources, it might be possible to further improve the 

accuracies of air temperature and dew point temperature ANN models by employing a more 

resource-intensive GA and PSO searches. Future work could use a less restricted parameter 

setting for the fitness evaluation such as more than 20,000 patterns for the ANN training and 

more random network instantiations. The possible research objectives for the future work could 

be to determine the preferred GA and PSO parameters to search for the best duration and 

resolution of input prior data and examine the effects of the fitness evaluation parameters such as 

the number of ANN training patterns and random network instantiations on creating more 

accurate ANN models for each prediction horizon. 
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